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Flow in a rotating curved circular pipe
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The flow in a rotating curved pipe with circular cross section is investigated theoretically and numerically.
A perturbation solution up to the second order is obtained. A numerical procedure is used to solve the full
governing equations and the simplified governing equations in the small curvature limit. Comparisons are
made between the numerical and perturbation results, elucidating the lost information due to simplification and
the valid range of the perturbation solution. The flow characteristics, including the secondary flow, the axial
flow, and the friction factor ratio, are examined in detail.
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[. INTRODUCTION cross section. He introduced a new paramé&téhat repre-
sents the ratio of the Coriolis force to the centrifugal force

Fluid flow through curved pipes is very common. It can and studied the flow transitions with the varyifgfor two
be found in nature, e.g., in blood vessels, particularly theDean numbers. Wang and Chefg] studied the flow struc-
aorta and the trachea, or engineering applications. With thaure in a rotating toroidal square duct when the wall is heated
popularity of the rotary machinery in industry, the character-or cooled. Yamamotoet al. [9], employing the spectral
istics of the flow in the control pipe system, the transportmethod, examined the flow structure and the flow rate for the
pipe system, and the coolant pipe system are among the maflow in a rotating curved square duct. Zhagigal. [10] stud-
factors to improve the efficiencies of the rotary machinery.ed the flow structure and friction factor in a rotating rectan-
Consequently, understanding flows in rotating pipes has beyular duct for a wide range of rotation speeds and found
come one of the urgent problems in engineering and one aore complex cell structures. Zhaeg al. [11], employing
the challenging research fields in fluid mechanics. Analyzingpe perturbation method, studied the flow in a toroidal annu-
these types of flows requires an interesting nonlinear mode|,, pipe. Their work focused on the effect of the inner wall of

Complex secondary flows exist and flow bifurcation mayne hine and revealed an eight-cell structure of the secondary
occur under some conditions. flow whenE is around—1

Because of their wide spectrum of applications and rich- Bifurcation studies on the flow in rotating curved circular

ness in physical phenomena, flows in rotating curved pipes. :
have been studied by many researchers since the first work ]Lples' Wtertle Ci‘g'ed (CjJUtSbly I;)asl;oplgulods Ifnd Il_ie;t[mlﬂ].
Ludwieg[1] who analyzed the flow in a rotating toroidally elmi etal. [13] an eimi -an andakumgn4] also

curved square duct based on the momentum integral methof°Tked on the bifurcation of the flow in a rotating curved

Miyazaki studied the characteristics of the flow and heafdu@re duct. Wang and Cheng examined the flow instability
transfer in the boundary layer of rotating toroidally curvedin rotating rectangular duct experimentally for the counter-
circular pipe [2] and rectangular ducf3] using finite- rotating cas¢15].
difference method and predicted an increase of the friction In practical applications, large curvatures are often en-
factor with increasing rotation. These analyses were for th€ountered. But the existing studies on curved rotating pipe
corotating cases, i.e., the rotating angular velocity and th@re almost all confined to small curvatures, based on the
axial flow velocity are in the same direction. simplified governing equations, such as Daskopoulos and
Ito and Motai[4] first studied the fluid flow in both coro- Lenhoff[12] and Ishigaki7]. The simplification is expected
tating and counter-rotatingthe rotating velocity and the to lose some flow information, especially the effects of the
axial flow velocity are in the opposite directionsurved curvature, but there has been no study on the lost information
ducts and predicted a reduction in strength and a reversal @nd no study on the accuracy of the solutions obtained from
the direction of the secondary flow for small curvatures andhe simplified equations. The present study is an attempt to
the Dean numbers. Mendb] confirmed the reversal of the fill these gaps. The full governing equations are solved nu-
secondary flow even for the high Dean numbersettal.[6] = merically, and the simplified governing equations are solved
studied the friction factor in a rotating toroidally curved pipe numerically and analytically. Comparisons elucidate the ac-
numerically and experimentally for the cases of the constanturacy of the simplified equations and the lost flow informa-
Dean number. IshigaKi7] examined the flow characteristics tion through simplification.
and friction factor numerically for both counter-rotating and  This study is also partly motivated by Liu and Masliyah
corotating curved pipes with small curvatures and a circulaf16], who examined the effects of curvature on the flow in a
stationary curved circular pipe and found some significant
influences. In the present strudy, the curvatdiec=d/R, d
* Author to whom correspondence should be addressed. FAXiS the diameter of the pipe aridlis the radius of curvatuye
(505 665-2659. Email address: izhang@cnls.lanl.gov covers a range from 0.001 to 1.6. Results illustrate the effects
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FIG. 1. The coordinate system and the rotating curved pipe.
ow vow G kcosh Kk Sing
of the curvature on the flow structure and the friction factor U T roe - v m Wy oW
ratio.
Based on the above analysis, the present study serves two 2 .
} . : ) + ——(ucosf#—wv sinf)
purposes: to elucidate the flow information lost through the Ro
use of the simplified equations, and to show the effects of the
curvature on the flow. Comparisons are made between the 19& 1arg, (1d)
results, which not only validate each other, but also elucidate r g r or )’

the flow information lost because of the simplifications. We
will examine the flow structure with varying curvature for whereM =1—«r cosé andG= — (Jdp/Js)/Re is a constant.
the high and low Rossby numbers, and discuss the curvatué&, &, andé, are the vorticity components irs(,6) and

effects in detail. are defined as
lorv 1du low «sind
Il. GOVERNING EQUATIONS 55‘? or  r a0’ Er_F 90 + MW
Figure 1 shows the rotating curved circular pipe and the p
coordinate system used in the paper. The coordinates*are £)=— ow  kcosb
0, s*, wheres* is along the centerline of the pipe. The ar M

velocities in the directions af*, 6, s* are denoted by*, . . .
v*, W*. The pipe rotates around tlyeaxis with a constant Four dimensionless parameters are defined as
angular velocityQ)*. WhenQ* >0, there is a corotation is . .
meaning that the rotation is in the same direction with the  _ % F= Q'R De=Re\x, Ro= Wm
axial flow. WhenQ* <0 there is a counter-rotation. It is ' ' ' d,Q*’
assumed that the flow is incompressible, steady, laminar, and
fully developed. The following dimensionless parameters arevhere Re=wjid, /v is the Reynolds numbek is the curva-
introduced: ture, and De is the Dean numbéris a new parameter first
used by Ishigak[7] and represents the ratio of the Coriolis
. . . . . force to the centrifugal forceF>0 means corotation, and
A dn I dn F=0 means the stationary. Ro is the Rossby number and
' n v’ v’ represents the ratio of the inertial force to the Coriolis force.
We easily find that Ro is not an independent parameter and
can be written as Re1/(F«).

*
m

p* dﬁ Q*dﬁ An important characterization of the secondary flow is the
p= o2 Q= v stream function. To satisfy continuity equatidfia), the
stream functiony is introduced as
whered,, is the hydraulic diameterd,=2R.=d, R is the 19y 2
radius of the pipe w¥, is the dimensioned mean axial veloc- F e Mu. =M. 2

ity, v is the kinematic viscosity, and is the fluid densityp
andp* are the dimensionless and dimensioned pseudopre3he relation betweeg and the axial vorticityé is
sures. The equations of the continuity and the momentum in

the dimensionless forms are 3 _Ei ray +Ei ia_w 3
S roar\Moar| rag\Mrdg)
d(Mru)  9(Mv) _o (1a In this paper, the contours af are used to examine the

ar a0 ' secondary flow structure, and the maximum of stream func-
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tion ¢,a that physically represents the volumetric flux of the
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The leading terms fow and ¢ are the Poiseuille flow

secondary flow is used to measure the intensity of the seolutions,

ondary flow.

If the radius of the pipe is much smaller than that of

curvature, that isc<1 andM=1, the governing equations
can be simplified. Similarly to Deall7] for the stationary
curved pipe flow, we drop the higher-order termsxoénd
obtain the simplified governing equations

Jru &v

ar aa =0. (43
u vou v? ap 9és
JE— —_—— e = + JE N ——
e Vi o De’w cosf(w+ 2F) oy
(4b)
dv v dv U 1dp §S
U—+——+—=———+ +2F) + —
PRI T ey De’w sin (w+ 2F)
(40)
§W+U'9W—G+2 0 ing)+Vw, (4
u&r iy RO(ucos v sing) w, (4d)
whereV?=3?/dr?+ 1ir lor + 1Ir? 5%/ 3 6°.

From these equations, the flow is dominated by Beg,
and Ro. For the stationary case=0,Ro—=), the flow is

®

INNOl

Wo=—(1-T%), =0
If the axial reference velocity}, is the maximal axial ve-
locity of the flow in a stationary straight pipe, théh=4.

Equating the coefficients df terms, we obtain the first-
order perturbation equations

4 . dWp
\% ¢1=2(W0+F)Sln07, (92
19¢q dwg 1 9y dwg
2 —_—_—,—————_———
VWiSF S0 o T 90 (9b)

Considering the boundary conditions, we obtain the solutions

affected by only one parameter, the Dean number, which has

been pointed out by Dedd.7].

IIl. PERTURBATION SOLUTION

The simplified equations in the small curvature lifiigs.

(48—(4d)] can be solved using the perturbation method
when Re-». We rewrite the simplified equations in the

following form:

W

oW
2 -
&0&‘ ET Vey=2K(W+F)T sing

7

oW
+ 2K (w+F)cosé E—TV‘H&,
(5a

loyow 1dgow

TogoF T ar 90 (5b)
whereF=2r, G=G/4, K=De*/8. The boundary conditions
are

At T=1.0, =0, w=0. (6)

For the small Dean numberg;, andw can be expanded in
powers ofK as

w=Ww,(T,0) +Kwy (T, 0)+K2W,(F,0)+
(7)
= tho(T,0) + KWy (T, 0)+K2y(T,0) + -

as
G2sing FGsing
_ F2)2(F2 _ ~ (1 _%2\2
4 2608 T(1-T9)%(T°—4) 192 T(1-7°),
(103
G¥(1-79
— _ 2_ 4, ~6
Wl_—737280 (—19+2Ir“—97F “+T°)cosh
Fefra-r 120+ 120°%2— 40F *
+ 737280 (— - )cosé.
(10b)
For the second order ik, we obtain
dpy 0 Iy 0
~v 4 N 2
V4 36 aF+aFa0 4
5 F~_(9W12~_o7wo
+2(wgt+ )rsm67+ wlrsm07
Wy
+2(wg+F)cosf—- 7 (113
) 109¢y owg 1Yy owg 1 difg dwyq
V W2=:__+:___:__-
r 90 Jr r 96 dr T Jr 96
(11b

The second-order solution is

G*sin 20

s — 2\2 2 4
V2= 118908518400 (L 1T (4979-279F*+ 77T

FGZ2sin 26

2 2\2
118908518400 (11T

—134°+578) +

X (49 7765+ 114 24F — 19 648572 — 13 400-T2

— B72(FF “+3328GT4— 576GT9), (129
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w;=0,(G,F.F)+9,(G,F,T)cog26), (12b)

whereg;(G,F,T) andg,(G,FF) are complex expressions,
both of them are only polynomial functions Bfwith coef-

ficients as functions o andF. This process of solving the

PHYSICAL REVIEW E 67, 056303 (2003

difference method is used for the source tefdsAfter this,

the governing differential equations become a set of alge-
braic equations. By adding the terms in theirection J,)

to theJ terms, a trigonal matrix in the direction, which can

be solved by the triple diagonal matrix algorith(tiDMA)
method, is obtained. A sweep is made in théirection. The

higher-order terms presents no difficulty and can continugquation ofys[Eq. (2)] is solved by center difference scheme
with the aid of a symbolic manipulation program on comput-and the TDMA is also employed. For a given De number, an

ers, except that it becomes increasingly laborious.

IV. NUMERICAL PROCEDURE

The full equations[Egs. Xa)—1(d)] and the simplified
governing equationdEqgs. 4a)—4(b)] are solved numerically.
We first rewrite the equations in the following form:

ardy ddy J 13
o a0 (13
For the full equations,
3 d¢ Kk cosH 3 19¢ «sing
(UG oot b Jymvdm o a4
when ¢= &,
J—l 2De? cost| — +F w
—F e~ cos M %
+20e% sing| 1 F |2
er sinf| ar |
when¢=w,
J_G N 2k cosé 2k sing
_M M uw M VW
+ 2 0 ing
R—O(ucos —v sing).
For the simplified equations,
¢ 1d¢
Jr—ud)—y, J,g—v _Fﬂ_ﬁ’

when ¢= &,
J—l 2De? cosf(w+F aW+2D2 ing(w+F o
=7 e cosf(w )(90 e‘r sinf(w )ar’
when¢=w,
J=G+ 2 0 iné
= RO(ucos v sing).
The boundary conditions are
Jdv
u=v=w=0, =0, fs:E at r=0.5.

(14)

Equation (13) with Egs. (2) and (3) and the boundary
conditions, Eq{(14), are solved numerically by a finite vol-

iterative procedure is applied to obtain the specific value of
the axial pressure gradie@ First, we guess an initial value
of G and compare the obtained mean axial velocity with the
given value, that is, 1. If the former is small@r large) than

the latter, we increas@r decreaseG until their difference is
smaller than 108.

A uniform grid mesh system is employed in the whole
cross section because boundary layers exist not only near the
wall but also at the dividing boundaries of the secondary
flow cells. The number of grids used is 21 in thdirection
and 41 in thef direction. The grid independence of the grid
system is confirmed by repeating calculations with finer and
coarser grids. The convergence criterii®"*1— ¢")/¢"|
<10°®, wheren is the computational step number.

V. RESULTS AND DISCUSSIONS

A. Comparisons between the numerical results and the
perturbation results

In the previous sections, we obtained both the numerical
and perturbation solutions on the flow in rotating curved
pipes with circular cross sections. Comparisons should be
made between these solutions in order to find out the valid
ranges of the simplified governing equations and the pertur-
bation solution. Some results are shown in Figs. 2 and 3, and
Tables 1 and 2.

Figure 2 shows the flow structure obtained from the three
solutions fork=0.02. The numerical results based on the
full equations are shown in the lower half cross section and
those based on the simplified equations are shown in the
upper half domain, the symbols in the upper half cross sec-
tion represent the results from the perturbation solution. For
De=10, the three results are in good agreements. For De
=20, the results are still in good agreements For — 2.0,
F=-1.0, andF=0.0. But forF=1.0, the perturbation re-
sults are significantly different from the numerical results,
indicating that the perturbation solution becomes invalid.
Therefore, the valid range of the Dean number for the per-
turbation solution depends on the value Fef It is well
known that the valid range of the perturbation solution for
the stationary curved pipe flow is about ©24. For rotating
pipe, when the Rossby number is large, increagtnfyjom
zero to a positive value has the same effect as that of increas-
ing the Dean numbe€i7], so increasing- will decrease the
valid range for the Dean number.

To find out the accuracy of the simplified governing equa-
tions, numerical calculations were carried out for=bE50
and the curvature from 0.001 to 0.2. Some results are shown
in Fig. 3 for k=0.02 and«=0.1. The results from the sim-
plified equations are plotted in the upper half domain, while

ume method. The hybrid difference scheme is used for théhe results from the full equations are shown in the lower

convective and viscous termg,(and J,) and the central

half. For xk=0.02 the two numerical solutions predict the
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W =(0.111,0.111, 0.110) (0.0136, 0.0136, 0.0135) (0.191, 0.191,0.189) (0.339, 0.339, 0.340)

FIG. 2. Comparisons between
numerical solutions and the per-
turbation solution for x=0.02.
Plots in the upper half cross sec-
tion: numerical results based
on the simplified equations. Plots

w,, /2=(1.001,1.001,0999)  (1.001, 1.001, 1.000) (1.001, 1.001, 1.000) (0.999, 0.999, 0.999) ) .
Feo in lower half cross section:
=-20 F=-10 F=00 F=10 numerical results based on
(@a)De =10 the full equations. Symbols in the

upper half cross section: results
based on the perturbation solution
‘/’max:(lr//:naxvll’;ax’wfna))’ Winad2
=(w :naJZIW?naJZvW haw-  Super-
script f denotes numerical results
from the full equation, superscript
s denotes results from the simpli-
fied equation, superscripp de-
notes perturbation solution results.

W ax =(0.440, 0.440,0.437) (0.055, 0.055,0.053) (0.742, 0.743, 0.786) (1.260, 1.262,1.522)

W /2= (1.000, 1.008, 0.999) (1.001, 1.001, 1.000) (0.998, 1.014, 1.002) (0.9919,1.039, 1.037)
F=-20 F=-10 F=00 F=10
(b) De=20
same secondary flow structure and the distribution of the 1 dp
axial flow velocity. The maximal difference between the NeRe=—opas: (16)

Umax 1S 0.3% for—2<F=<1. But for k=0.1, the difference

between the two numerical results becomes significant. As

the curvature increases, the simplifications are no longer agsome results of the friction factor ratid./As (As is the
propriate and the terms dropped through simplification befriction factor of the flow in a stationary straight pipeb-
come non-negligible. tained from the three solutions are given in Tables | and II.

The friction factor\ is another important flow property. Table I shows that when Bel0 and«=0.02, the three so-

It is obtained through ba|ancing the forces a|0ng the axialutions almost all obtain the similar value with the maximum
direction: difference 0.13% in the range 2<F<1. For De=20, the
results are also in good agreements exceptHsr0.2 (for
F=0.2, the difference is 2.5% The difference becomes
larger asF increases further.

Tables | and 1l also show, foF<—1.0, the simplifica-
tions predict a greater friction factor ratio than the full gov-
Rewriting the above equation into dimensionless form, weerning equations, while fof > — 1.0, they predict a smaller
obtain value. Some special discussions are needed for this phenom-

ap*
Js*

xi *2) R, = — R2 15
cszm TRe= TRe. ( )
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W, = (7.520, 7.548)

D),

(2.136, 2.154)

(9.009,9.0332)

(11.134, 11.149)

(0.878,0.882)
F=10

(0.874, 0.878)
F=00

(0.978, 0.980)
F=-10

W, /2= (0.891,0886)
F=-20

(a) x=0.02

(0.979,0.992)
F=-10

W, /2= (0.887,0.865)
F=-20

(0.861, 0.877)
F=0.0
®)x=0.1

(0.8493, 0.8673)
F=1.0
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FIG. 3. Numerical result comparisons for De
=150. Plots in the upper half cross section: nu-
merical results based on the simplified equations.
Plots in lower half cross section: numerical re-
sults based on the full equationsw,,

=y Inawirsnax)vwmax/zz (w Ina>J2 rVVrST1a>J2)-

TABLE I. Comparisons of the friction factor ratio between the numerical results and perturbation results.
Full: numerical results from the full governing equations. Simplified: numerical results from simplified
governing equations. Perturbation: perturbation solution results.

De=10 «=0.02 De=20 x=0.02

F Full Simplified Perturbation Full Simplified Perturbation
-2 1.0017 1.0020 1.0011 1.0072 1.0081 1.0142
—-1.8 1.0015 1.0017 1.0006 1.0045 1.0052 1.0081
—-1.6 1.0014 1.0015 1.0003 1.0026 1.0031 1.0037
—-14 1.0013 1.0014 1.0001 1.0016 1.0018 1.0010
—-1.2 1.0013 1.0013 1.0000 1.0013 1.0013 1.0000
-1 1.0013 1.0012 1.0000 1.0019 1.0016 1.0007
-0.8 1.0014 1.0013 1.0002 1.0033 1.0014 1.0032
-0.6 1.0016 1.0013 1.0004 1.0055 1.0048 1.0074
-0.4 1.0018 1.0017 1.0008 1.0083 1.0074 1.0135
-0.2 1.0022 1.0017 1.0013 1.0117 1.0107 1.0217
0 1.0025 1.0022 1.0019 1.0157 1.0146 1.0322
0.2 1.0030 1.0026 1.0026 1.0202 1.0189 1.0452
0.4 1.0035 1.003 1.0034 1.025 1.0236 1.0612
0.6 1.004 1.0036 1.0044 1.0302 1.0287 1.0807
0.8 1.0046 1.0041 1.0054 1.0356 1.0339 1.1044
1 1.0053 1.0047 1.0066 1.0413 1.0393 1.1335
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TABLE Il. Comparisons of the friction factor ratio between the two numerical results fer T50.

xk=0.02 k=01 xk=0.2

F Full Simplified Full Simplified Full Simplified
-2 1.5084 1.5155 1.5218 1.5558 1.5372 1.6025
-18 1.4492 1.4563 1.4563 1.4906 1.4642 1.5308
-16 1.3740 1.3812 1.3745 1.4104 1.3741 1.4447
-14 1.2500 1.2584 1.2410 1.2839 1.2266 1.3149
-1.2 1.0247 1.0278 1.0266 1.0431 1.0312 1.0666
-1 1.1954 1.1985 1.1979 1.2155 1.2001 1.2394
-0.8 1.2949 1.2936 1.3034 1.2980 1.3136 1.3057
-0.6 1.3686 1.3656 1.3788 1.3641 1.3909 1.3631
-0.4 1.4313 1.4274 1.4437 1.4246 1.4584 14214
-0.2 1.4863 1.4818 1.5019 1.4801 1.5203 1.4779

0 1.5357 1.5307 1.5553 1.5314 1.5782 1.5323
0.2 1.5808 1.5755 1.605 1.5795 1.633 1.5845
0.4 1.6224 1.6168 1.6516 1.6249 1.6851 1.6348
0.6 1.6612 1.6556 1.6959 1.6679 1.7349 1.6831
0.8 1.6978 1.6917 1.7375 1.7088 1.7824 1.7296

1 1.7319 1.7255 1.7774 1.7479 1.8280 1.7744

enon here. As examples, we take=1.0 andF=—-2.0. To the centrifugal force. This phenomenon has been reported by
get the simplified equations, we drop two terms in the sourcéshigaki[7] for F around—1. As the curvature increases, the
termJ in Eq. (13) for the axial velocity equations that are  secondary flow cells due to the centrifugal force are intensi-
fied, their sizes become larger and larger, until at last they
2k cosf 2ksing 2KUW take up the right half cross section. The maximum of the
v W T WL stream function//maxwhich represents the i_ntensity of the net
secondary flow, first decreases and then increases as the cur-
vature increases.
The source terms of the axial vorticigy are

whereus is the secondary flow velocity along thxecoordi-
nate (Fig. 1). When F=1.0, at the horizontal symmetry
plane,us<0 which induces a negativk;, so dropping the
terms increases the axial flow rate and results in a smallerrJ =2 D& cosé
friction factor ratio. ForF=—2.0, us>0 which induces a
positivef, so droppingfy results in a greater friction factor
ratio.

oW

AP
M or

ad F)aw 2 D€Er sing
M+ (7—0+ r sin

For small curvaturesM~1, and increasing the curvature
N _ _ does not modify the source term significantly. But for a rela-
B. Flow transitions with changing curvature tively large curvature, increasing the curvature increases

performed in the small curvature limit, based on the simpli-
fied governing equations, such as that of Daskopoulos anc’ g
Lenhoff [12] and Ishigaki[7]. In engineering applications /&
where large curvatures are often encountered, it is importan
and interesting to study the effects of curvature on the flow. \¢
In the present study where the full governing equations are
solved numerically, it is easy to investigate the flow transi- ,
tions with varying curvature while keeping the other param-
eters constant.

Ishigaki [7] studied the flow variations wit in detail.
Here we chos& = — 1.3 and De- 250 to study the effects of
the curvature. The secondary flow streamlines and the con
tours of the axial flow velocity are shown in Fig. 4. The outer
bend is on the left. The dotted lines represent the co-
clockwise secondary vortices.

As shown in Fig. 4, whenx=0.001, the secondary flow  FIG. 4. Flow variations with curvature for Be250 andF =
has a four-cell structure, the larger vortices near the wall are-1.3. Out bend is on the left. Upper plots, contours of stream
due to the Coriolis force, while the smaller ones are due tdunction. Lower plots, contours of axial flow velocity.

w_ =1.9584 1.9494
(a) x=0.001 (b) x=0.301 (c) x=0.801 (d) ==1.6
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A /Ay
2.6

2.4

2.2

3 F=200
2.0 //—‘
. Fm 2.0
1.6 L : . 1K
0 A . .
AcfAs o _ _
1.4 FIG. 6. Flow variations with Ro for De 20. The out bend is on

the left. Upper, results from procedufig for F=50; lower, results
from procedurdii) for k=0.1.

Ro=0.7 Ro=0.2 Ro =0.05

flow structure with varying Ro only along procedui¢. In

this study, we will examine the variations of flow natures

with Ro along the two procedures to find the lost information

due to the simplifications of the governing equations.

N L 1 K Figure 6 shows the flow structure with varying Ro. This

0 0.4 0.8 1.2 L6 figure indicates that both procedures can produce the similar
FIG. 5. Curves of the friction factor as a function of curvature Taylor-Proudman phenomenon. When Ro is small such as

for De=250. 0.05, the flow structure is almost symmetrical about yhe

axis and the axial velocity is nearly constant in the core

present case and De are kept constant, the increasecin region and contours are shaped like a dumbbell. This can be

will intensify the secondary flow due to the centrifugal force. explained qualitatively as the following: considering the
For the axial flow velocity, Fig. 4 indicates that the loca- terms inw equation(Eg. 49 relative to the Rossby number

tion of the maximum axial velocity is divided into two loca- are

tions as the curvature increases. The contours are distorted

and seem to be pulled to the inner bend and outer bends at 2

the same time. R_o(
The effects of the curvature on the friction factor ratio are

shown in Fig. 5 for different. WhenF is around—1, e.g.,

F=-1.1 and_1.3, the friction factor ratio first decreases For a positive Ro, near the horizontal Symmetrica| p|ane,

and then increases with increasing curvature.F~erl.0 and |, <0 and the above expression is negative and reduces the
0.0, the friction factor ratio increases with curvature, while|qcg) axial velocity, while near the upper and lower wall,
for F=—2.0 and—3.0, the friction factor ratio first increases
and then decreases with curvature. All these phenomena ha
never been reported in literatures and we hope to verify the
in future experiments. When we take into account the varia:

tions of the secondary flow intensity, these phenomena maabove expression becomes larger, until at last it results in a

be explained. Because the friction factor determines the flo X'umbbell-lllke shgpe of the axial velocity contours with two
vblgh velocity regions near the upper and lower walls.

pressure drop along the axial direction, these variations ma .
be of significance in engineering applications. Although the two _procedurgs produce very S|m|lar_ flow
structures, they predict very different secondary flow inten-
sities and the frication factor ratios. Figure 7 shows the
curves of the maximum of the stream function and the fric-
For a small Rossby number, the flow will appear as ation factor ratio as functions of the Rossby number obtained
Taylor-Proudman phenomenon. This flow structure has beefiom the two procedures. When the Rossby number de-
reported by Ishigaki7] based on the simplified equations, in creases, for procedurg), the secondary flow intensity in-
which the Rossby number is an independent parametecreases with the increasing Rossby number, while for proce-
Based on the full governing Egela—(1d), it is easily found  dure (ii), the secondary flow intensity first increases then
that the Rossby number is not an independent parameter adécreases. Although the friction factor ratios obtained from
can be written as Re1/(Fk). To approach a small Rossby the two procedures both decrease as the Rossby number in-
number, two procedures may be employéd: keepingF  creases, the values are very different for the same Rossby
constant, while increasing curvature (ii) keepingx con-  numbers. Because Ro is an independent parameter for the
stant, while increasind-. In fact, Ishigaki[7] studied the simplified equations, when De arklare specified, there is

L1

2
ucosf—v sing)= RoUs*

us>0 which increases the axial velocity near the wall. When
Y?o is large, this effect is negligible because the above ex-
ression is very small. But when Ro becomes smaller, the

C. Flow transitions with changing Rossby number
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FIG. 7. Variations of the
stream function maximum and the
friction factor ratio with Ro.
Delta, results from procedur@);
square, results from proceduie.
Parameters’ values are the same as
I8 , in Fig. 6.

AAAI\AAAAA, AL SLA

0

only one curve ofym., With the varying Ro. Ishigak[7]  ary flow are similar to those for the small Dean numbers. For
made concluded that the secondary flow wakenfRasde- ~F=—1.02, the no-symmetry-imposed procedure still pro-
creases. According to the present study, this conclusion is nétuces the unconditional stable solution, while the symmetry
exact because it only follows proceduig while procedure imposed procedure produces a completely different flow

(i) is omitted because of the small curvature simplification.structure—the symmetric stable solution. The streamlines
show three vortices in the lower half cross section: two due
to the centrifugal force and the Coriolis force, one due to the

D. Flow structure for the high Dean numbers flow instability (the Dean vortex, the vortex near the symme-
try plang. The location of the axial flow velocity is divided
In the previous sections, the effects of curvature and validnto two locations that appear in the boundaries between the
range of the simplified equations are analyzed, which are thpean vortex and the vortex due to the centrifugal force. The
main purposes of the present study. In this section, we wilpotential sources of the instability for flows in a rotating
discuss the flow structure for the high Dean numbers. Whegurved pipe are the centrifugal force and the Coriolis force.
the Dean number exceeds a critical value, the flow equationshe centrifugal force produces a secondary flow that moves
have multiple solutions. Daskopoulos and LenHa#] stud-  towards outer bend along the horizontal symmetry plane and
ied the flow bifurcation, but the imposed symmetry in theirtends to give rise of flow instability, the secondary flow due
simulation caused loss of some flow branches. Like Daskoto the Coriolis force pointing inwards acts as the disturbance
poulos and Lenhoff, Ishigaki’] obtained the secondary flow at #=# near the outer wall for counter-rotation, then the
cells due to the flow instabilities, but only one flow branch bifurcation emerges and the Dean vortex is generated if the
was predicted. In order to find out the multiple solutions forDean number exceeds a critical value.FAdecreases, for the
the high Dean numbers, the present study employs two nunconditionally stable solution, the secondary vortices due to
merical procedures: one procedure has symmetry imposed tbe centrifugal force becomes small, while for the symmetri-
find the symmetric stable flow branch like Ishigdki; the  cal solution, the secondary flow due to the Coriolis force and
other has no symmetry imposed to detect the unconditionalljhe Dean vortex combine each other because of the same

stable flow branches. rotating direction, the secondary flow due to the centrifugal
The results for De- 450, k=0.1 obtained through the two force becomes weak and completely disappears- at
numerical procedures are shown in Fig. 8. Fer —0.9, the  —1.20. At this value, the axial velocity still has two maxi-

two procedures both produce the unconditionally stable somum regions. AF = —1.40, because the increase of Coriolis
lution, the distributions of the axial velocity and the second-force reduces the effect of centrifugal force, the flow insta-
bility disappears and the two numerical procedures give the
same unconditionally stable solution.

VI. CONCLUSIONS

Most of the previous valuable studies on the flow in ro-
tating curved pipes with circular cross sections were based
on the simplified equations for small curvatures and no au-
thor focused on the effects of the curvature. In the present
study, we numerically solved the full governing equations
and numerically and analytically solved the simplified gov-

S : erning equations. Based on the calculations, we elucidated
(@F=-09 (®F=-102 (VF=-12 the lost information because of the simplification. Based on
the numerical results from the full governing equations,

FIG. 8. Flow structures for De450, k=0.1. Upper plots, so- We discussed the effects of curvature on the flow structure
lution with imposed symmetry; lower plots, solution without im- and friction factor ratio for the high and low Rossby
posed symmetry. numbers. We also detected two flow branches from
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the full governing equations through two numerical proce- ACKNOWLEDGMENT
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