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Flow in a rotating curved circular pipe

Jinsuo Zhang,1,2,* Ning Li,1 and Benzhao Zhang2
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The flow in a rotating curved pipe with circular cross section is investigated theoretically and numerically.
A perturbation solution up to the second order is obtained. A numerical procedure is used to solve the full
governing equations and the simplified governing equations in the small curvature limit. Comparisons are
made between the numerical and perturbation results, elucidating the lost information due to simplification and
the valid range of the perturbation solution. The flow characteristics, including the secondary flow, the axial
flow, and the friction factor ratio, are examined in detail.
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I. INTRODUCTION

Fluid flow through curved pipes is very common. It ca
be found in nature, e.g., in blood vessels, particularly
aorta and the trachea, or engineering applications. With
popularity of the rotary machinery in industry, the charact
istics of the flow in the control pipe system, the transp
pipe system, and the coolant pipe system are among the
factors to improve the efficiencies of the rotary machine
Consequently, understanding flows in rotating pipes has
come one of the urgent problems in engineering and on
the challenging research fields in fluid mechanics. Analyz
these types of flows requires an interesting nonlinear mo
Complex secondary flows exist and flow bifurcation m
occur under some conditions.

Because of their wide spectrum of applications and ri
ness in physical phenomena, flows in rotating curved pi
have been studied by many researchers since the first wo
Ludwieg @1# who analyzed the flow in a rotating toroidall
curved square duct based on the momentum integral met
Miyazaki studied the characteristics of the flow and h
transfer in the boundary layer of rotating toroidally curv
circular pipe @2# and rectangular duct@3# using finite-
difference method and predicted an increase of the fric
factor with increasing rotation. These analyses were for
corotating cases, i.e., the rotating angular velocity and
axial flow velocity are in the same direction.

Ito and Motai@4# first studied the fluid flow in both coro
tating and counter-rotating~the rotating velocity and the
axial flow velocity are in the opposite directions! curved
ducts and predicted a reduction in strength and a revers
the direction of the secondary flow for small curvatures a
the Dean numbers. Menon@5# confirmed the reversal of th
secondary flow even for the high Dean numbers. Itoet al. @6#
studied the friction factor in a rotating toroidally curved pip
numerically and experimentally for the cases of the cons
Dean number. Ishigaki@7# examined the flow characteristic
and friction factor numerically for both counter-rotating a
corotating curved pipes with small curvatures and a circu
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cross section. He introduced a new parameterF that repre-
sents the ratio of the Coriolis force to the centrifugal for
and studied the flow transitions with the varyingF for two
Dean numbers. Wang and Cheng@8# studied the flow struc-
ture in a rotating toroidal square duct when the wall is hea
or cooled. Yamamotoet al. @9#, employing the spectra
method, examined the flow structure and the flow rate for
flow in a rotating curved square duct. Zhanget al. @10# stud-
ied the flow structure and friction factor in a rotating recta
gular duct for a wide range of rotation speeds and fou
more complex cell structures. Zhanget al. @11#, employing
the perturbation method, studied the flow in a toroidal an
lar pipe. Their work focused on the effect of the inner wall
the pipe and revealed an eight-cell structure of the secon
flow whenF is around21.

Bifurcation studies on the flow in rotating curved circul
pipes were carried out by Daskopoulos and Lenhoff@12#.
Selmi et al. @13# and Selmi and Nandakumar@14# also
worked on the bifurcation of the flow in a rotating curve
square duct. Wang and Cheng examined the flow instab
in rotating rectangular duct experimentally for the count
rotating case@15#.

In practical applications, large curvatures are often
countered. But the existing studies on curved rotating p
are almost all confined to small curvatures, based on
simplified governing equations, such as Daskopoulos
Lenhoff @12# and Ishigaki@7#. The simplification is expected
to lose some flow information, especially the effects of t
curvature, but there has been no study on the lost informa
and no study on the accuracy of the solutions obtained fr
the simplified equations. The present study is an attemp
fill these gaps. The full governing equations are solved
merically, and the simplified governing equations are solv
numerically and analytically. Comparisons elucidate the
curacy of the simplified equations and the lost flow inform
tion through simplification.

This study is also partly motivated by Liu and Masliya
@16#, who examined the effects of curvature on the flow in
stationary curved circular pipe and found some signific
influences. In the present strudy, the curvaturek (k5d/R, d
is the diameter of the pipe andR is the radius of curvature!
covers a range from 0.001 to 1.6. Results illustrate the effe
:

©2003 The American Physical Society03-1



to

t
th
th
t
a
e
r
tu

th

e

th
s
a
ar

c-

re

t
is

and
ce.
and

he

e
nc-

.
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of the curvature on the flow structure and the friction fac
ratio.

Based on the above analysis, the present study serves
purposes: to elucidate the flow information lost through
use of the simplified equations, and to show the effects of
curvature on the flow. Comparisons are made between
results, which not only validate each other, but also elucid
the flow information lost because of the simplifications. W
will examine the flow structure with varying curvature fo
the high and low Rossby numbers, and discuss the curva
effects in detail.

II. GOVERNING EQUATIONS

Figure 1 shows the rotating curved circular pipe and
coordinate system used in the paper. The coordinates arer * ,
u, s* , where s* is along the centerline of the pipe. Th
velocities in the directions ofr * , u, s* are denoted byu* ,
v* , w* . The pipe rotates around they axis with a constant
angular velocityV* . WhenV* .0, there is a corotation is
meaning that the rotation is in the same direction with
axial flow. WhenV* ,0 there is a counter-rotation. It i
assumed that the flow is incompressible, steady, laminar,
fully developed. The following dimensionless parameters
introduced:

s5
s*

dh
, r 5

r *

dh
, w5

w*

wm*
, u5

u* dh

y
, v5

v* dh

y
,

p5
p* dh

2

ry2 , V5
V* dh

2

y
,

wheredh is the hydraulic diameter (dh52Rc5d , Rc is the
radius of the pipe!. wm* is the dimensioned mean axial velo
ity, y is the kinematic viscosity, andr is the fluid density.p
and p* are the dimensionless and dimensioned pseudop
sures. The equations of the continuity and the momentum
the dimensionless forms are

]~Mru !

]r
1

]~Mv !

]u
50, ~1a!

FIG. 1. The coordinate system and the rotating curved pipe
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r
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]p

]r
2De2w cosuS w

M
12F D

2S 1

r

]js

]u
1

k sinu

M
jsD , ~1b!

u
]v
]r

1
v
r

]v
]u

1
uv
r

52
1

r

]p

]u
1De2w sinuS w

M
12F D

1S ]js

]r
2

k cosu

M
jsD , ~1c!

u
]w

]r
1

v
r

]w

]u
5

G

M
1

k cosu

M
uw2

k sinu

M
vw

1
2

Ro
~u cosu2v sinu!

1S 1

r

]j r

]u
2

1

r

]r ju

]r D , ~1d!

whereM512kr cosu andG52(]p/]s)/Re is a constant.
js , j r , andju are the vorticity components in (s,r ,u) and
are defined as

js5
1

r

]rv
]r

2
1

r

]u

]u
, j r5

1

r

]w

]u
1

k sinu

M
w,

ju52
]w

]r
1

k cosu

M
w.

Four dimensionless parameters are defined as

k5
dh

R
, F5

V* R

wm*
, De5ReAk, Ro5

wm*

dhV*
,

where Re5wm*dh /y is the Reynolds number,k is the curva-
ture, and De is the Dean number.F is a new parameter firs
used by Ishigaki@7# and represents the ratio of the Coriol
force to the centrifugal force.F.0 means corotation, and
F50 means the stationary. Ro is the Rossby number
represents the ratio of the inertial force to the Coriolis for
We easily find that Ro is not an independent parameter
can be written as Ro51/(Fk).

An important characterization of the secondary flow is t
stream function. To satisfy continuity equation~1a!, the
stream functionc is introduced as

1

r

]c

]u
5Mu, 2

]c

]r
5Mv. ~2!

The relation betweenc and the axial vorticityjs is

2js5
1

r

]

]r S r

M

]c

]r D1
1

r

]

]u S 1

Mr

]c

]u D . ~3!

In this paper, the contours ofc are used to examine th
secondary flow structure, and the maximum of stream fu
3-2
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tion cmax that physically represents the volumetric flux of t
secondary flow is used to measure the intensity of the
ondary flow.

If the radius of the pipe is much smaller than that
curvature, that isk!1 andM'1, the governing equation
can be simplified. Similarly to Dean@17# for the stationary
curved pipe flow, we drop the higher-order terms ofk and
obtain the simplified governing equations

]ru

]r
1

]v
]u

50, ~4a!

u
]u

]r
1

v
r

]u

]u
2

v2

r
52

]p

]r
2De2w cosu~w12F !2

1

r

]js

]u
,

~4b!

u
]v
]r

1
v
r

]v
]u

1
uv
r

52
1

r

]p

]u
1De2w sinu~w12F !1

]js

]r
,

~4c!

u
]w

]r
1

v
r

]w

]u
5G1

2

Ro
~u cosu2v sinu!1¹2w, ~4d!

where¹25]2/]r 211/r ]/]r 11/r 2 ]2/]u2.
From these equations, the flow is dominated by De,F,

and Ro. For the stationary case (F50,Ro→`), the flow is
affected by only one parameter, the Dean number, which
been pointed out by Dean@17#.

III. PERTURBATION SOLUTION

The simplified equations in the small curvature limit@Eqs.
~4a!–~4d!# can be solved using the perturbation meth
when Ro→`. We rewrite the simplified equations in th
following form:

S 2
]c

]u

]

] r̃
1

]c

] r̃

]

]u D¹2c52K~w1F ! r̃ sinu
]w

] r̃

12K~w1F !cosu
]w

]u
2 r̃¹4c,

~5a!

1

r̃

]c

]u

]w

] r̃
2

1

r̃

]c

] r̃

]w

]u
5G̃1¹2w, ~5b!

where r̃ 52r , G̃5G/4, K5De2/8. The boundary conditions
are

At r̃ 51.0, c50, w50. ~6!

For the small Dean numbers,c and w can be expanded in
powers ofK as

w5w0~ r̃ ,u!1Kw1~ r̃ ,u!1K2w2~ r̃ ,u!1¯ ,
~7!

c5c0~ r̃ ,u!1Kw1~ r̃ ,u!1K2c2~ r̃ ,u!1¯ .
05630
c-

f

as

The leading terms forw and c are the Poiseuille flow
solutions,

w05
G̃

4
~12 r̃ 2!, c050. ~8!

If the axial reference velocitywm* is the maximal axial ve-

locity of the flow in a stationary straight pipe, thenG̃54.
Equating the coefficients ofK terms, we obtain the first-

order perturbation equations

¹4c152~w01F !sinu
]w0

] r̃
, ~9a!

¹2w15
1

r̃

]c1

]u

]w0

] r̃
2

1

r̃

]c1

] r̃

]w0

]u
. ~9b!

Considering the boundary conditions, we obtain the soluti
as

c15
G̃2 sinu

4608
r̃ ~12 r̃ 2!2~ r̃ 224!2

FG̃ sinu

192
r̃ ~12 r̃ 2!2,

~10a!

w15
G̃3r̃ ~12 r̃ 2!

737280
~219121r̃ 229r̃ 41 r̃ 6!cosu

1
FG̃2r̃ ~12 r̃ 2!

737280
~21201120r̃ 2240r̃ 4!cosu.

~10b!

For the second order inK, we obtain

r̃¹4c252S 2
]c1

]u

]

] r̃
1

]c1

] r̃

]

]u D¹2c1

12~w01F ! r̃ sinu
]w1

] r̃
12w1r̃ sinu

]w0

] r̃

12~w01F !cosu
]w1

]u
, ~11a!

¹2w25
1

r̃

]c2

]u

]w0

] r̃
1

1

r̃

]c1

]u

]w1

] r̃
2

1

r̃

]c1

] r̃

]w1

]u
.

~11b!

The second-order solution is

c25
G̃4 sin 2u

118 908 518 400
r̃ 2~211 r̃ 2!2~497922792r̃ 21777r̃ 4

2134r̃ 615r̃ 8!1
FG2 sin 2u

118 908 518 400
r̃ 2~211 r̃ 2!2

3~49 776G̃1114 240F219 648G̃r̃ 2213 400Fr̃ 2

26720Fr̃ 413328G̃r̃ 42576G̃r̃ 6!, ~12a!
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w15g1~G̃,F, r̃ !1g2~G̃,F, r̃ !cos~2u!, ~12b!

whereg1(G̃,F, r̃ ) and g2(G̃,F, r̃ ) are complex expressions
both of them are only polynomial functions ofr̃ with coef-
ficients as functions ofG̃ andF. This process of solving the
higher-order terms presents no difficulty and can contin
with the aid of a symbolic manipulation program on comp
ers, except that it becomes increasingly laborious.

IV. NUMERICAL PROCEDURE

The full equations@Eqs. 1~a!–1~d!# and the simplified
governing equations@Eqs. 4~a!–4~b!# are solved numerically
We first rewrite the equations in the following form:

]rJr

]r
1

]Ju

]u
5rJ. ~13!

For the full equations,

Jr5uf2
]f

]r
1

k cosu

M
f, Ju5vf2

1

r

]f

]u
2

k sinu

M
f,

whenf5js ,

J5
1

r H 2De2 cosuS w

M
1F D ]w

]u

12De2r sinuS w

M
1F D ]w

]r J ,

whenf5w,

J5
G

M
1

2k cosu

M
uw2

2k sinu

M
vw

1
2

Ro
~u cosu2v sinu!.

For the simplified equations,

Jr5uf2
]f

]r
, Ju5vf2

1

r

]f

]u
,

whenf5js ,

J5
1

r H 2De2 cosu~w1F !
]w

]u
12De2r sinu~w1F !

]w

]r J ,

whenf5w,

J5G1
2

Ro
~u cosu2v sinu!.

The boundary conditions are

u5v5w50, c50, js5
]v
]r

at r 50.5. ~14!

Equation ~13! with Eqs. ~2! and ~3! and the boundary
conditions, Eq.~14!, are solved numerically by a finite vol
ume method. The hybrid difference scheme is used for
convective and viscous terms (Jr and Ju) and the central
05630
e
-

e

difference method is used for the source terms~J!. After this,
the governing differential equations become a set of al
braic equations. By adding the terms in theu direction (Ju)
to theJ terms, a trigonal matrix in ther direction, which can
be solved by the triple diagonal matrix algorithm~TDMA !
method, is obtained. A sweep is made in theu direction. The
equation ofc @Eq. ~2!# is solved by center difference schem
and the TDMA is also employed. For a given De number,
iterative procedure is applied to obtain the specific value
the axial pressure gradientG. First, we guess an initial value
of G and compare the obtained mean axial velocity with
given value, that is, 1. If the former is smaller~or larger! than
the latter, we increase~or decrease! G until their difference is
smaller than 1026.

A uniform grid mesh system is employed in the who
cross section because boundary layers exist not only nea
wall but also at the dividing boundaries of the second
flow cells. The number of grids used is 21 in ther direction
and 41 in theu direction. The grid independence of the gr
system is confirmed by repeating calculations with finer a
coarser grids. The convergence criterionu(fn112fn)/fnu
,1026, wheren is the computational step number.

V. RESULTS AND DISCUSSIONS

A. Comparisons between the numerical results and the
perturbation results

In the previous sections, we obtained both the numer
and perturbation solutions on the flow in rotating curv
pipes with circular cross sections. Comparisons should
made between these solutions in order to find out the v
ranges of the simplified governing equations and the per
bation solution. Some results are shown in Figs. 2 and 3,
Tables 1 and 2.

Figure 2 shows the flow structure obtained from the th
solutions fork50.02. The numerical results based on t
full equations are shown in the lower half cross section a
those based on the simplified equations are shown in
upper half domain, the symbols in the upper half cross s
tion represent the results from the perturbation solution.
De510, the three results are in good agreements. For
520, the results are still in good agreements forF522.0,
F521.0, andF50.0. But for F51.0, the perturbation re
sults are significantly different from the numerical resul
indicating that the perturbation solution becomes inva
Therefore, the valid range of the Dean number for the p
turbation solution depends on the value ofF. It is well
known that the valid range of the perturbation solution
the stationary curved pipe flow is about De,24. For rotating
pipe, when the Rossby number is large, increasingF from
zero to a positive value has the same effect as that of incr
ing the Dean number@7#, so increasingF will decrease the
valid range for the Dean number.

To find out the accuracy of the simplified governing equ
tions, numerical calculations were carried out for De5150
and the curvature from 0.001 to 0.2. Some results are sh
in Fig. 3 for k50.02 andk50.1. The results from the sim
plified equations are plotted in the upper half domain, wh
the results from the full equations are shown in the low
half. For k50.02 the two numerical solutions predict th
3-4
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FIG. 2. Comparisons betwee
numerical solutions and the per
turbation solution for k50.02.
Plots in the upper half cross sec
tion: numerical results base
on the simplified equations. Plot
in lower half cross section:
numerical results based o
the full equations. Symbols in the
upper half cross section: result
based on the perturbation solutio
cmax5(c max

f ,c max
s ,c max

p ), wmax/2
5(w max

f /2,wmax
s /2,w max

p ). Super-
script f denotes numerical result
from the full equation, superscrip
s denotes results from the simpli
fied equation, superscriptp de-
notes perturbation solution results
th
e

A
a

be

.
xia

w

II.

m

s

v-
r
om-
same secondary flow structure and the distribution of
axial flow velocity. The maximal difference between th
cmax is 0.3% for22<F<1. But for k50.1, the difference
between the two numerical results becomes significant.
the curvature increases, the simplifications are no longer
propriate and the terms dropped through simplification
come non-negligible.

The friction factorlc is another important flow property
It is obtained through balancing the forces along the a
direction:

lc

1

2
rwm*

22pRc52
]p*

]s*
pRc

2. ~15!

Rewriting the above equation into dimensionless form,
obtain
05630
e

s
p-
-

l

e

lc Re52
1

2 Re

]p

]s
. ~16!

Some results of the friction factor ratiolc /ls (ls is the
friction factor of the flow in a stationary straight pipe! ob-
tained from the three solutions are given in Tables I and
Table I shows that when De510 andk50.02, the three so-
lutions almost all obtain the similar value with the maximu
difference 0.13% in the range22<F<1. For De520, the
results are also in good agreements except forF>0.2 ~for
F50.2, the difference is 2.5%!. The difference become
larger asF increases further.

Tables I and II also show, forF,21.0, the simplifica-
tions predict a greater friction factor ratio than the full go
erning equations, while forF.21.0, they predict a smalle
value. Some special discussions are needed for this phen
3-5
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FIG. 3. Numerical result comparisons for D
5150. Plots in the upper half cross section: n
merical results based on the simplified equatio
Plots in lower half cross section: numerical r
sults based on the full equationswmax

5(c max
f ,c max

s ),wmax/25(w max
f /2,wmax

s /2).

TABLE I. Comparisons of the friction factor ratio between the numerical results and perturbation results.
Full: numerical results from the full governing equations. Simplified: numerical results from simplified
governing equations. Perturbation: perturbation solution results.

De510 k50.02 De520 k50.02

F Full Simplified Perturbation Full Simplified Perturbation
22 1.0017 1.0020 1.0011 1.0072 1.0081 1.0142

21.8 1.0015 1.0017 1.0006 1.0045 1.0052 1.0081
21.6 1.0014 1.0015 1.0003 1.0026 1.0031 1.0037
21.4 1.0013 1.0014 1.0001 1.0016 1.0018 1.0010
21.2 1.0013 1.0013 1.0000 1.0013 1.0013 1.0000
21 1.0013 1.0012 1.0000 1.0019 1.0016 1.0007

20.8 1.0014 1.0013 1.0002 1.0033 1.0014 1.0032
20.6 1.0016 1.0013 1.0004 1.0055 1.0048 1.0074
20.4 1.0018 1.0017 1.0008 1.0083 1.0074 1.0135
20.2 1.0022 1.0017 1.0013 1.0117 1.0107 1.0217

0 1.0025 1.0022 1.0019 1.0157 1.0146 1.0322
0.2 1.0030 1.0026 1.0026 1.0202 1.0189 1.0452
0.4 1.0035 1.003 1.0034 1.025 1.0236 1.0612
0.6 1.004 1.0036 1.0044 1.0302 1.0287 1.0807
0.8 1.0046 1.0041 1.0054 1.0356 1.0339 1.1044
1 1.0053 1.0047 1.0066 1.0413 1.0393 1.1335
056303-6
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TABLE II. Comparisons of the friction factor ratio between the two numerical results for De5150.

k50.02 k50.1 k50.2

F Full Simplified Full Simplified Full Simplified
22 1.5084 1.5155 1.5218 1.5558 1.5372 1.6025

21.8 1.4492 1.4563 1.4563 1.4906 1.4642 1.5308
21.6 1.3740 1.3812 1.3745 1.4104 1.3741 1.4447
21.4 1.2500 1.2584 1.2410 1.2839 1.2266 1.3149
21.2 1.0247 1.0278 1.0266 1.0431 1.0312 1.0666
21 1.1954 1.1985 1.1979 1.2155 1.2001 1.2394

20.8 1.2949 1.2936 1.3034 1.2980 1.3136 1.3057
20.6 1.3686 1.3656 1.3788 1.3641 1.3909 1.3631
20.4 1.4313 1.4274 1.4437 1.4246 1.4584 1.4214
20.2 1.4863 1.4818 1.5019 1.4801 1.5203 1.4779

0 1.5357 1.5307 1.5553 1.5314 1.5782 1.5323
0.2 1.5808 1.5755 1.605 1.5795 1.633 1.5845
0.4 1.6224 1.6168 1.6516 1.6249 1.6851 1.6348
0.6 1.6612 1.6556 1.6959 1.6679 1.7349 1.6831
0.8 1.6978 1.6917 1.7375 1.7088 1.7824 1.7296
1 1.7319 1.7255 1.7774 1.7479 1.8280 1.7744
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enon here. As examples, we takeF51.0 andF522.0. To
get the simplified equations, we drop two terms in the sou
term J in Eq. ~13! for the axial velocity equations that are

f d5
2k cosu

M
uw2

2k sinu

M
vw5

2kusw

12kx
,

whereus is the secondary flow velocity along thex coordi-
nate ~Fig. 1!. When F51.0, at the horizontal symmetr
plane,us,0 which induces a negativef d , so dropping the
terms increases the axial flow rate and results in a sma
friction factor ratio. ForF522.0, us.0 which induces a
positive f d , so droppingf d results in a greater friction facto
ratio.

B. Flow transitions with changing curvature

Most of the existing studies on curved rotating pipe a
performed in the small curvature limit, based on the simp
fied governing equations, such as that of Daskopoulos
Lenhoff @12# and Ishigaki@7#. In engineering applications
where large curvatures are often encountered, it is impor
and interesting to study the effects of curvature on the fl
In the present study where the full governing equations
solved numerically, it is easy to investigate the flow tran
tions with varying curvature while keeping the other para
eters constant.

Ishigaki @7# studied the flow variations withF in detail.
Here we choseF521.3 and De5250 to study the effects o
the curvature. The secondary flow streamlines and the c
tours of the axial flow velocity are shown in Fig. 4. The ou
bend is on the left. The dotted lines represent the
clockwise secondary vortices.

As shown in Fig. 4, whenk50.001, the secondary flow
has a four-cell structure, the larger vortices near the wall
due to the Coriolis force, while the smaller ones are due
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the centrifugal force. This phenomenon has been reporte
Ishigaki @7# for F around21. As the curvature increases, th
secondary flow cells due to the centrifugal force are inten
fied, their sizes become larger and larger, until at last t
take up the right half cross section. The maximum of t
stream functioncmax which represents the intensity of the n
secondary flow, first decreases and then increases as the
vature increases.

The source terms of the axial vorticityjs are

rJ52 De2 cosuS w

M
1F D ]w

]u
12 De2r sinuS w

M
1F D ]w

]r
.

For small curvatures,M'1, and increasing the curvatur
does not modify the source term significantly. But for a re
tively large curvature, increasing the curvature increa
w/M with an increasingly large centrifugal force. In th

FIG. 4. Flow variations with curvature for De5250 andF5
21.3. Out bend is on the left. Upper plots, contours of stre
function. Lower plots, contours of axial flow velocity.
3-7
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present case,F and De are kept constant, the increase ink
will intensify the secondary flow due to the centrifugal forc

For the axial flow velocity, Fig. 4 indicates that the loc
tion of the maximum axial velocity is divided into two loca
tions as the curvature increases. The contours are disto
and seem to be pulled to the inner bend and outer bend
the same time.

The effects of the curvature on the friction factor ratio a
shown in Fig. 5 for differentF. WhenF is around21, e.g.,
F521.1 and21.3, the friction factor ratio first decrease
and then increases with increasing curvature. ForF51.0 and
0.0, the friction factor ratio increases with curvature, wh
for F522.0 and23.0, the friction factor ratio first increase
and then decreases with curvature. All these phenomena
never been reported in literatures and we hope to verify th
in future experiments. When we take into account the va
tions of the secondary flow intensity, these phenomena m
be explained. Because the friction factor determines the fl
pressure drop along the axial direction, these variations m
be of significance in engineering applications.

C. Flow transitions with changing Rossby number

For a small Rossby number, the flow will appear as
Taylor-Proudman phenomenon. This flow structure has b
reported by Ishigaki@7# based on the simplified equations,
which the Rossby number is an independent parame
Based on the full governing Eqs.~1a!–~1d!, it is easily found
that the Rossby number is not an independent paramete
can be written as Ro51/(Fk). To approach a small Rossb
number, two procedures may be employed:~i! keeping F
constant, while increasing curvaturek; ~ii ! keepingk con-
stant, while increasingF. In fact, Ishigaki @7# studied the

FIG. 5. Curves of the friction factor as a function of curvatu
for De5250.
05630
.

ted
at

ve
m
-

ay
w
ay

a
en

er.

nd

flow structure with varying Ro only along procedure~i!. In
this study, we will examine the variations of flow natur
with Ro along the two procedures to find the lost informati
due to the simplifications of the governing equations.

Figure 6 shows the flow structure with varying Ro. Th
figure indicates that both procedures can produce the sim
Taylor-Proudman phenomenon. When Ro is small such
0.05, the flow structure is almost symmetrical about they
axis and the axial velocity is nearly constant in the co
region and contours are shaped like a dumbbell. This can
explained qualitatively as the following: considering th
terms inw equation~Eq. 4d! relative to the Rossby numbe
are

2

Ro
~u cosu2v sinu!5

2

Ro
us .

For a positive Ro, near the horizontal symmetrical pla
us,0 and the above expression is negative and reduces
local axial velocity, while near the upper and lower wa
us.0 which increases the axial velocity near the wall. Wh
Ro is large, this effect is negligible because the above
pression is very small. But when Ro becomes smaller,
above expression becomes larger, until at last it results
dumbbell-like shape of the axial velocity contours with tw
high velocity regions near the upper and lower walls.

Although the two procedures produce very similar flo
structures, they predict very different secondary flow inte
sities and the frication factor ratios. Figure 7 shows t
curves of the maximum of the stream function and the fr
tion factor ratio as functions of the Rossby number obtain
from the two procedures. When the Rossby number
creases, for procedure~i!, the secondary flow intensity in
creases with the increasing Rossby number, while for pro
dure ~ii !, the secondary flow intensity first increases th
decreases. Although the friction factor ratios obtained fr
the two procedures both decrease as the Rossby numbe
creases, the values are very different for the same Ros
numbers. Because Ro is an independent parameter for
simplified equations, when De andF are specified, there is

FIG. 6. Flow variations with Ro for De520. The out bend is on
the left. Upper, results from procedure~i! for F550; lower, results
from procedure~ii ! for k50.1.
3-8
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FIG. 7. Variations of the
stream function maximum and th
friction factor ratio with Ro.
Delta, results from procedure~i!;
square, results from procedure~ii !.
Parameters’ values are the same
in Fig. 6.
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only one curve ofcmax with the varying Ro. Ishigaki@7#
made concluded that the secondary flow wakens asuRou de-
creases. According to the present study, this conclusion is
exact because it only follows procedure~i!, while procedure
~ii ! is omitted because of the small curvature simplificatio

D. Flow structure for the high Dean numbers

In the previous sections, the effects of curvature and v
range of the simplified equations are analyzed, which are
main purposes of the present study. In this section, we
discuss the flow structure for the high Dean numbers. W
the Dean number exceeds a critical value, the flow equat
have multiple solutions. Daskopoulos and Lenhoff@12# stud-
ied the flow bifurcation, but the imposed symmetry in th
simulation caused loss of some flow branches. Like Das
poulos and Lenhoff, Ishigaki@7# obtained the secondary flow
cells due to the flow instabilities, but only one flow bran
was predicted. In order to find out the multiple solutions
the high Dean numbers, the present study employs two
merical procedures: one procedure has symmetry impose
find the symmetric stable flow branch like Ishigaki@7#; the
other has no symmetry imposed to detect the uncondition
stable flow branches.

The results for De5450,k50.1 obtained through the two
numerical procedures are shown in Fig. 8. ForF520.9, the
two procedures both produce the unconditionally stable
lution, the distributions of the axial velocity and the secon

FIG. 8. Flow structures for De5450, k50.1. Upper plots, so-
lution with imposed symmetry; lower plots, solution without im
posed symmetry.
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ary flow are similar to those for the small Dean numbers. F
F521.02, the no-symmetry-imposed procedure still p
duces the unconditional stable solution, while the symme
imposed procedure produces a completely different fl
structure—the symmetric stable solution. The streamli
show three vortices in the lower half cross section: two d
to the centrifugal force and the Coriolis force, one due to
flow instability ~the Dean vortex, the vortex near the symm
try plane!. The location of the axial flow velocity is divided
into two locations that appear in the boundaries between
Dean vortex and the vortex due to the centrifugal force. T
potential sources of the instability for flows in a rotatin
curved pipe are the centrifugal force and the Coriolis for
The centrifugal force produces a secondary flow that mo
towards outer bend along the horizontal symmetry plane
tends to give rise of flow instability, the secondary flow d
to the Coriolis force pointing inwards acts as the disturba
at u5p near the outer wall for counter-rotation, then th
bifurcation emerges and the Dean vortex is generated if
Dean number exceeds a critical value. AsF decreases, for the
unconditionally stable solution, the secondary vortices du
the centrifugal force becomes small, while for the symme
cal solution, the secondary flow due to the Coriolis force a
the Dean vortex combine each other because of the s
rotating direction, the secondary flow due to the centrifu
force becomes weak and completely disappears atF5
21.20. At this value, the axial velocity still has two max
mum regions. AtF521.40, because the increase of Corio
force reduces the effect of centrifugal force, the flow ins
bility disappears and the two numerical procedures give
same unconditionally stable solution.

VI. CONCLUSIONS

Most of the previous valuable studies on the flow in r
tating curved pipes with circular cross sections were ba
on the simplified equations for small curvatures and no
thor focused on the effects of the curvature. In the pres
study, we numerically solved the full governing equatio
and numerically and analytically solved the simplified go
erning equations. Based on the calculations, we elucida
the lost information because of the simplification. Based
the numerical results from the full governing equation
we discussed the effects of curvature on the flow struct
and friction factor ratio for the high and low Rossb
numbers. We also detected two flow branches fr
3-9



e
tu
h En-

ZHANG, LI, AND ZHANG PHYSICAL REVIEW E 67, 056303 ~2003!
the full governing equations through two numerical proc
dures. One issue that remains is the effects of the curva
on the bifurcation diagram and the critical parameters. T
will be studied in future work.
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